

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Kistapur, Medchal, Medchal Dist – 501 401, Telangana – India.

Mobile No. 9346009393, 9346009494, 9346009595, Website: www.mrem.ac.in

Course Outcomes

Branch: Civil Engineering Regulations: R-22

S.No	Year / Sem	Course Code	Course Name	Course Outcomes
1	I/I	MA101BS	Matrices and Calculus	CO1: Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations CO2: Find the Eigenvalues and Eigen vectors and Reduce the quadratic form to canonical form using orthogonal transformations. CO3: Solve the applications on the mean value theorems and Evaluate the improper
				integrals using Beta and Gamma functions CO4: Find the extreme values of functions of two variables with/ without constraints. CO5: Evaluate the multiple integrals and apply the concept to find areas, volumes
2	I/I	PH102BS	Applied Physics	CO1: Understand physical world from fundamental point of view by the concepts of Quantum mechanics and visualize the difference between conductor, semiconductor, and an insulator by classification of solids. CO2: Identify the role of semiconductor devices in science and engineering Applications. CO3: Explore the fundamental properties of dielectric, magnetic materials and energy for their applications. CO4: Appreciate the features and applications of Nanomaterials. CO5: Understand various aspects of Lasers and Optical fiber and their applications in diverse fields.

3	I/I	ME103ES	C Programming and Data Structures	CO1: Understand the various steps in Program development. 2. Explore the basic concepts in C Programming Language. CO2: Develop modular and readable C Programs CO3: Understand the basic concepts such as Abstract Data Types, Linear and Non-Linear Data structures. CO4: Apply data structures such as stacks, queues in problem solving CO5: To understand and analyze various searching and sorting algorithms.
4	I/I	ME104ES	Engineering Workshop	 CO1: Study and practice on machine tools and their operations • CO 2: CO2: Practice on manufacturing of components using workshop trades including pluming, fitting, carpentry, foundry, house wiring and welding. CO3: Identify and apply suitable tools for different trades of Engineering processes CO4: Identify and apply suitable tools for drilling, material removing, measuring and chiseling. CO5: Apply basic electrical engineering knowledge for house wiring practice.
5	I/I	EN105HS	English for Skill Enhancement	CO1: Understand the importance of vocabulary and sentence structures. CO2: Choose appropriate vocabulary and sentence structures for their oral and written communication. 3. CO3: Demonstrate their understanding of the rules of functional grammar and Develop comprehension skills from the known and unknown passages. CO4: Take an active part in drafting paragraphs, letters, essays, abstracts, précis and reports in various contexts. CO5: Acquire basic proficiency in reading and writing modules of English
6	I/I	CE106ES	Elements of Civil	CO1: Understands the method and ways of investigations required for Civil Engineering

			Engineering	projects		
				CO2: Identify the various rocks depending on geological		
				CO3: Identify the various minerals depending on geological		
				CO4: Classifications Evaluate the properties of cement, fine and coarse aggregates		
				CO5: Determine its suitability for construction.		
				CO1: Know the determination of the Planck's constant using Photo electric effect and		
				identify the material whether it is n-type or p-type by Hall experiment.		
7	I/I	PH107BS	Applied Physics	CO2: Appreciate quantum physics in semiconductor devices and optoelectronics.		
/	1/1	FH10/B5	Laboratory	CO3: Gain the knowledge of applications of dielectric constant.		
				CO4: Understand the variation of magnetic field and behavior of hysteresis curve.		
				CO5: Carried out data analysis		
			C Dragnamming	CO1: Develop modular and readable C Programs		
			C Programming and Data	CO2: Solve problems using strings, functions		
8	I/I	/I ME108ES	I/I ME108ES	ME108ES	ME108ES Structures	CO3: Handle data in files
			Laboratory	CO4: Implement stacks, queues using arrays, linked lists.		
			Laboratory	CO5: To understand and analyze various searching and sorting algorithms.		
			English Language	CO1: Understand the nuances of English language through audio- visual experience		
			and	CO2: group activities		
9	I/I	EN109HS	Communication	CO3: Neutralize their accent for intelligibility		
			Skills Laboratory	CO4: Speak with clarity which in turn enhances their employability skills		
			Skins Laboratory	CO5: Speak with confidence which in turn enhances their employability skills		
10	I/I	*MC110	Environmental	CO1: The Engineering graduate will understand technologies on the basis of ecological		
10	U 1/1 *M	WICIIU	Science	principles and environmental regulations which in turn help in sustainable development		

				CO2: The Engineering graduate will evaluate technologies on the basis of ecological
				principles and environmental regulations which in turn help in sustainable development
				CO3: The Engineering graduate will develop technologies on the basis of ecological
				principles and environmental regulations which in turn help in sustainable development
				CO4: To educate the students regarding environmental issues and problems at local,
				national and international level.
				CO5: To know more sustainable way of living
				CO1: Identify whether the given differential equation of first order is exact or not
			Ordinary	CO2: Solve higher differential equation and apply the concept of differential equation to
11	I/II	MA201BS	Differential	real world problems.
11	1/11	WIAZUIBS	Equations and	CO3: Use the Laplace transforms techniques for solving ODE's.
			Vector Calculus	CO4: Evaluate the line, surface and volume integrals
				CO5: converting the line, surface and volume integrals from one to another
				CO1: Students will acquire the basic knowledge of electrochemical procedures related to
		CH202BS		corrosion and its control.
				CO2: The students are able to understand the basic properties of water and its usage in
12	I/II		Engineering	domestic and industrial purposes.
12	1/11	СП202Б5	Chemistry	CO3: They can learn the fundamentals and general properties of polymers and other
				engineering materials.
				CO4: They can predict potential applications of chemistry
				CO5: practical utility in order to become good engineers and entrepreneurs.
12	T/II	ME202ES	Computer Aided	CO1: Apply computer aided drafting tools to create 2D and 3D objects
13	13 I/II	ME203ES	Engineering	CO2: sketch conics and different types of solids

			Graphics	CO3: Appreciate the need of Sectional views of solids and Development of surfaces of
				solids
				CO4: Read and interpret engineering drawings
				CO5: Conversion of orthographic projection into isometric view and vice versa manually
				and by using computer aided drafting
				CO1: Determine resultant of forces acting on a body and analyse equilibrium of a body
				subjected to a system of forces.
			Amplied	CO2: Solve problem of bodies subjected to friction.
14	I/II	CE204ES	Applied Mechanics	CO3: Find the location of centroid and calculate moment of inertia of a given section.
			Mechanics	CO4: Understand the kinetics and kinematics of a body undergoing rectilinear, curvilinear,
				rotatory motion.
				CO5: Understand rigid body motion.
				CO1: Calculate angles, distances and levels
		CE205PC	Surveying	CO2: Identify data collection methods and prepare field notes
15	I/II			CO3: Understand the working principles of survey instruments
				CO4: Estimate measurement errors and apply corrections
				CO5: Interpret survey data and compute areas and volumes
				CO1: Develop the application specific codes using python.
			Python	CO2: Understand Strings, Lists, Tuples and Dictionaries in Python
16	I/II	CE206ES	Programming	CO3: Verify programs using modular approach, file I/O
			Laboratory	CO4: Verify programs using, Python standard library
				CO5: Implement Digital Systems using Python
17	I/II	CH207BS	Engineering	CO1: Determination of parameters like hardness of water and rate of corrosion of mild

			Chemistry	steel in various conditions.
			Laboratory	CO2: Able to perform methods such as conductometry, potentiometry and pH metry in
			·	order to find out the concentrations or equivalence points of acids and bases.
				CO3: Students are able to prepare polymers like bakelite and nylon-6.
				CO4: Estimations saponification value, surface tension
				CO5: viscosity of lubricant oils
				CO1: Student will be able to prepare Map and Plan for required site with suitable scale.
				CO2: Student will be able to prepare contour Map and Estimate the Quantity of earthwork
				required for formation level for Road and Railway Alignment.
			Cumvavina	CO3: Student will be able to judge which type of instrument to be used for carrying out
18	I/II	CE208PC	PC Surveying	survey for a Particular Area and estimate the area.
			Laboratory - I	CO4: Student will be able to judge the profile of ground by observing the available existing
				contour map.
				CO5: Student will be able to plot traverses / sides of building and determine the location of
				points present on field on a piece of paper
				CO1: Student will be able to prepare Map and Plan for required site with suitable scale.
				CO2: Student will be able to prepare contour Map and Estimate the Quantity of earthwork
				required for formation level for Road and Railway Alignment.
				CO3: Student will be able to judge which type of instrument to be used for carrying out
19		CE306PC	SURVEYING	survey for a Particular Area and estimate the area.
	II/I		LABORATORY -	CO4: Student will be able to judge the profile of ground by observing the available existing
			I	contour map.
				CO5: Student will be able to plot traverses / sides of building and determine the location of
				points present on field on a piece of paper

				CO1: Apply the concepts of probability and distributions to some case studies.
				CO2: Correlate the concepts of one unit to the concepts in other units.
				CO3: Students would be able to identify distribution in certain realistic situation. It is
				mainly useful for circuit as well as non-circuit branches of engineering. Also able to
			PROBABILITY	differentiate among many random variables Involved in the probability models. It is quite
20		MA301BS	AND	useful for all branches of engineering.
20	II/I	MASUIDS	STATISTICS	CO4: The student would be able to calculate mean and proportions (large sample) and to
			STATISTICS	make Important decisions from few samples which are taken out of unmanageably huge
				populations.
				CO5: The student would be able to calculate mean and proportions (small sample) and to
				make Important decisions from few samples which are taken out of unmanageably huge
				populations
				CO1: Understand the different construction material.
			BUILDING	CO2: Understand the different component parts of building and their construction practices
		CE302PC	MATERIALS,	and techniques
21			CONSTRUCTIO	CO3: Understand the functional requirements to be considered for design and construction
	II/I		N AND	of building
			PLANNING	CO4: Identify the factors to be considered in planning and construction of buildings
				CO5: Plan a building based on the factors and principles of planning
				CO1: Site characterization and how to collect, analyze, and report geologic data using
			ENGINEERING	standards in engineering practice.
22	II/I	CE303PC	GEOLOGY	CO2: The fundamentals of the engineering properties of Earth materials and fluids.
			GEOLUGI	CO3: Rock mass characterization and the mechanics of planar rock slides and topples.
				CO4: Understand the structure and composition of earth.

				COS. Understand how precious couth natural resources in the management of construction	
				CO5: Understand how precious earth natural resources in the management of construction	
				industry and mineral based industries	
				CO1: Describe the concepts and principles, understand the theory of elasticity including	
				strain/displacement and Hooke's law relationships; and perform calculations, related to the	
				strength of structured and mechanical components.	
				CO2: Recognize various types loads applied on structural components of simple framing	
				geometries and understand the nature of internal stresses that will develop within the	
22	TT/T	CE204DC	STRENGTH OF	components.	
23	II/I	CE304PC	MATERIALS – I	CO3: To evaluate the strains and deformation that will result due to the elastic stresses	
				developed within the materials for simple types of loading. CO4: Analyze various situations involving structural members subjected to plane stresses by application of Mohr's circle of stress. CO5: Analyze the principal stresses and strains by recognize the orientation of principal	
				planes and develops an understanding of various theories of failures.	
				CO1: Understand the broad principles of fluid statics, kinematics and dynamics.	
				CO2: Understand definitions of the basic terms used in fluid mechanics and characteristics	
				of fluids and its flow.	
24	II/I	CE305PC	FLUID MECHANICS	CO3: Understand classifications of fluid flow.	
			MECHANICS	CO4: Be able to apply the continuity, momentum and energy principles.	
	CO5: Understand various frictional losses in pipes and measurement of flow using notches				
				& weirs.	
			SURVEYING	CO1: Prepare Map and Plan for required site with suitable scale.	
25	II/I	CE306PC	LABORATORY –	CO2: Prepare contour Map and Estimate the Quantity of earthwork required for formation	
			II	level for Road and Railway Alignment.	

				CO3: Judge which type of instrument to be used for carrying out survey for a Particular
				Area and estimate the area.
				CO4: Judge the profile of ground by observing the available existing contour map.
				CO5: Determine latitudes and departures for all segments of a closed loop traverse check
				for closure error, and express the results in the form of the standard accuracy ratio, i.e.
				accuracy ratio.
				CO1: Demonstrate the basic knowledge of the mechanical properties of materials
				CO2: Determine the yield stress, ultimate tensile stress, percentage elongation of steel,
			STRENGTH OF	compressive strength of brick and concrete
26	II/I	CE307PC	MATERIALS	CO3: Determine the ultimate shear stress, modulus of elasticity of steel
			LABORATORY	CO4: Determine the stiffness of the close coiled helical spring and hardness number of
				mild steel, brass, copper and aluminum.
				CO5: Determine the modulus of rigidity and impact strength of steel.
			COMPUTER AIDED	CO1: Plan buildings as per NBC. ●
				CO2: Use different Commands of selected drafting software to draw Conventional signs
				and brick bonds, Plan, Section and Elevation of buildings
27	II/I	CE308PC	DRAFTING	CO3: Draw section and elevation of panelled doors and trusses.
			LABORATORY	CO4: Draw and detail the different components of Stair cases.
			LABUKATURY	CO5: Develop and draw single /two storey residential building and public building as per
				the building by-laws.
			CONSTITUTION	CO1: Discuss the growth of the demand for civil rights in India for the bulk of Indians
28	II/I	*MC309	C309 CONSTITUTION OF INDIA	before the arrival of Gandhi in Indian politics.
				CO2: Discuss the intellectual origins of the framework of argument that informed the

				-
				conceptualization of social reforms leading to revolution in India.
				CO3: Discuss the circumstances surrounding the foundation of the Congress Socialist Party
				[CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of
				direct elections through adult suffrage in the Indian Constitution
				CO4: Discuss the passage of the Hindu Code Bill of 1956.
				CO5: Gain knowledge on roles and functioning of Election Commission.
			BASIC	CO1: To analyze and solve electrical circuits using network laws and theorems.
			ELECTRICAL	CO2: To understand and analyze basic Electric and Magnetic circuits
29	II/II	CE401PC	AND	CO3: To study the working principles of Electrical Machines
			ELECTRONICS	CO4: To introduce components of Low Voltage Electrical Installations
			ENGINEERING	CO5: To identify and characterize diodes and various types of transistors
			CONCRETE	CO1: Determine the properties of concrete ingredients i.e., cement, sand, coarse aggregate
				by conducting different tests.
				CO2: Recognize the effects of the rheology and early age properties of concrete on its
				long-term behavior.
30 II/II CE402PC CONCRETE CO3: Apply the use of various chemical admixtures and r	CO3: Apply the use of various chemical admixtures and mineral additives to design			
			TECHNOLOGY	cement-based materials with tailor-made properties
				CO4: Use advanced laboratory techniques to characterize cement-based materials.
				CO5: Perform mix design and engineering properties of special concretes such as high-
				performance concrete, self-compacting concrete, and fiber reinforced concrete.
				CO1: Describe the concepts and principles, understand the theory of elasticity, and perform
31	II/II	CE403PC	STRENGTH OF	calculations, relative to the strength of structures and mechanical components in particular
$\mathcal{I}_{\mathbf{I}}$	11/11		MATERIALS	to torsion and direct communication
			MAIERIALS	to torsion and direct compression.

				developed within the materials for simple types of loading.
				CO3: Analyze strength and stability of structural members subjected to Direct, and Direct
				and Bending stresses.
				CO4: Understand and evaluate the shear center and unsymmetrical bending.
				CO5: Design simple bars, beams, and circular shafts for allowable stresses and
				loads/demonstrate the significance and concept of shear centre
				CO1: Apply their knowledge of fluid mechanics in addressing problems in open channels
				and hydraulic machinery.
				CO2: Understand and solve problems in uniform, gradually and rapidly varied flows in
		CE404PC	HYDRAULICS	open channel in steady state conditions.
32	II/II		AND	CO3: Apply dimensional analysis and to differentiate the model, prototype and similitude
32	11/11		HYDRAULIC	conditions for practical problems.
			MACHINERY	CO4: Get the knowledge on different hydraulic machinery devices and its principles that
				will be utilized in hydropower development and for other practical usages.
				CO5: Learn about different types of pumps, their working and various engineering
				characteristics along with the basic concepts related to hydropower plant.
				CO1: An ability to apply knowledge of mathematics, science, and engineering
			STRUCTURAL	CO2: Analyse the statically indeterminate bars and continuous beams
33	II/II	CE405PC	ANALYSIS – I	CO3: Draw strength behaviour of members for static and dynamic loading.
			ANAL I SIS – I	CO4: Calculate the stiffness parameters in beams and pin jointed trusses.
				CO5: Understand the indeterminacy aspects to consider for a total structural system.
			HYDRAULICS	CO1: Describe the basic measurement techniques of fluid mechanics and its appropriate
34	II/II	CE406PC	AND	application
			HYDRAULIC	CO2: Interpret the results obtained in the laboratory for various experiments.

			MACHINERY	CO3: Discover the practical working of Hydraulic machines- different types of Turbines,
			LABORATORY	Pumps, and other miscellaneous hydraulics machines.
				CO4: Compare the results of analytical models introduced in lecture to the actual behavior
				of real fluid flows and draw correct and sustainable conclusions.
				CO5: Write a technical laboratory report
			BASIC	CO1: To analyze and solve electrical circuits using network laws and theorems.
			ELECTRICAL	CO2: To understand and analyze basic Electric and Magnetic circuits
35	II/II	CE407PC	&ELECTRONIC	CO3: To study the working principles of Electrical Machines
33	11/11	CE40/1 C	S	CO4: To introduce components of Low Voltage Electrical Installations
			ENGINEERING LABORATORY	CO5: To identify and characterize diodes and various types of transistors.
				CO1: Perform various tests required to assess the characteristics of cement
			CONCRETE	CO2: 2. Test and evaluate the properties of fine and coarse aggregates and determine its suitability for construction.
36	II/II	CE408PC	TECHNOLOGY	CO3: Evaluate the fresh and hardened properties of concrete.
			LABORATORY	CO4: Design the concrete mix for required strength and test its performance characteristics
				CO5: Get good idea about the water cement ratio
				CO1: Students will have developed a better understanding of important issues related to gender in contemporary India.
			GENDER	CO2: Students will be sensitized to basic dimensions of the biological, sociological,
37	II/II	*MC410	SENSITIZATION	psychological and legal aspects of gender. This will be achieved through discussion of
			LABORATORY	materials derived from research, facts, everyday life, literature and film.
				CO3: Students will attain a finer grasp of how gender discrimination works in our society
				and how to counter it.

				CO4: Students will acquire insight into the gendered division of labor and its relation to
				politics and economics.
				CO5: Men and women students and professionals will be better equipped to work and live
				together as equals.
				CO1: Analyze the two hinged arches.
			STRUCTURAL	CO2: Solve statically indeterminate beams and portal frames using classical methods.
38	III/I	CE501PC	ANALYSIS – II	CO3: Sketch the shear force and bending moment diagrams for indeterminate structures.
				CO4: Analyze the structure using Flexibility method.
				CO5: Formulate the stiffness matrix and analyze the beams by matrix methods.
				CO1: Characterize and classify the soils.
		CE502PC	GEOTECHNICA	CO2: Estimate seepage, stresses under various loading conditions.
39	III/I		${f L}$	CO3: Understand laboratory and field compaction characteristics.
			ENGINEERING	CO4: Analyze the compressibility of the soils.
				CO5: Understand the strength of soils under various drainage conditions.
			STRUCTURAL	CO1: Compare and Design the singly reinforced, doubly reinforced and flanged sections.
				CO2: Design the axially loaded, uniaxial and biaxial bending columns.
40	III/I	CE503PC	ENGINEERING	CO3: Classify the footings and Design the isolated square, rectangular and circular
40	111/1	CESUSI C	-I (RCC)	footings.
			-1 (RCC)	CO4: Distinguish and Design the one-way and two-way slabs
				CO5: To familiarize about Foundations and their Design.
			BUSINESS	CO1: The students will understand the various Forms of Business and the impact of
41	III/I	SM504MS ECC	ECONOMICS	economic variables on the Business.
			AND	CO2: The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt.

			FINANCIAL	CO3: The Students can study the firm's financial position by analysing the Financial
			ANALYSIS	Statements of a Company.
				CO4: Describe the significance of the project management, capital budgeting, estimation of
				the projects through capital budgeting methods for choosing the best and optimal projects.
				CO5: Provide the optimal decisions for acquiring the knowledge on financial accounting,
				management accounting and ratio analysis
				CO1: An ability to apply the knowledge of mathematics, science and engineering in the
				areas of traffic engineering, highway development and maintenance.
				CO2: An ability to design, conduct experiments to assess the suitability of the highway
				materials like soil, bitumen, aggregates and a variety of bituminous mixtures. Also the
				students will develop the ability to interpret the results and assess the suitability of these
				materials for construction of highways.
			TRANSPORTATI	CO3: An ability to design flexible and rigid highway pavements for varying traffic
42	III/I	CE505PC	ON	compositions as well as soil subgrade and environmental conditions using the standards
			ENGINEERING	stipulated by Indian Roads Congress.
				CO4: An ability to evaluate the structural and functional conditions of in-service highway
				pavements and provide solution in the form of routine maintenance measures or designed
				overlays using Indian Roads congress guidelines.
				CO5: An ability to assess the issues related to road traffic and provide engineering
				solutions supported with an understanding of road user psychological and behavioral
				patterns.
			HYDROLOGY	CO1: Understand the different concepts and terms used in engineering hydrology.
43	III/I	CE506PC	AND WATER	CO2: To identify and explain various formulae used in estimation of surface and Ground
			RESOURCES	water hydrology components

			ENGINEERING	CO3: Demonstrate their knowledge to connect hydrology to the field requirement.
				CO4: Gain knowledge and skills on drought management and rain water harvesting.
				CO5: Gain knowledge on Hydroelectric Power and Water Resources Planning and
				Development
				CO1: Categorize the test on materials used for Bituminous constructions.
			TRANSPORTATI	CO2: Evaluate the tests performed for Bitumen and mixes.
44	III/I	CE507PC	ON	CO3: To prepare a laboratory report
77	111/1	CESUTIC	ENGINEERING	CO4: Find out peak hour traffic & peak time for a given location on the road.
			LABORATORY	CO5: Calculate design speed, maximum speed & minimum speed limits of a location
				through spot speed.
	III/I	CE508PC		CO1: Determine the specific gravity of soil fraction by density bottle and pycnometer.
				CO2: Determine the in-situ density of soil by the core cutter and sand replacement method.
			GEOTECHNICA	CO3: Obtain knowledge to determine the grain size distribution of coarse grained soil by
45			L	dry sieve analysis.
43			ENGINEERING	CO4: Gain knowledge to classify the given fine grained soil based on its plasticity
			LABORATORY	characteristics.
				CO5: Determine the coefficient of permeability of soil and also evaluate the shear
				parameters of soil by various methods.
				CO1: Distinguish and Explain various forms of IPRs.
	III/I	*MC509	INTELLECTUAL	CO2: Identify criteria to fit one's own intellectual work in particular form of IPRs.
46			PROPERTY	CO3: Apply statutory provisions to protect particular form of IPRs.
			RIGHTS	CO4: Appraise new developments in IPR laws at national and international level
				CO5: Understand the concepts of Intellectual property to protect the traditional knowledge

				CO1: Assess characteristics of water and wastewater.
			ENVIRONMENT	CO2: Estimate quantities of water and wastewater and plan conveyance components.
47	III/II	CE601PC	AL	CO3: Design components of water and wastewater treatment plants.
			ENGINEERING	CO4: Be conversant with issues of air pollution and control.
				CO5: Identify the techniques of disposal methods of waste water and sludge.
				CO1: understand the principles and methods of Geotechnical Exploration
			FOUNDATION	CO2: assess the stability of slopes
48	III/II	CE602PC	ENGINEERING	CO3: calculate lateral earth pressures and check the stability of retaining walls
				CO4: analyse and design the shallow and deep foundations
				CO5: Recognize different types of well foundations and understand the design criteria.
		CE603PC		CO1: Analyze the tension members, compression members.
				CO2: Design the tension members, compression members and column bases and joints and
			STRUCTURAL	connections.
49	III/II		ENGINEERING	CO3: Analyze and Design the beams including built-up sections and beam and
 	111/11		– II (STEEL	connections.
			STRUCTURES)	CO4: Identify and Design the various components of welded plate girder including
				stiffeners
				CO5: Design of Roof Truss and its joints, end bearings.
			GREEN	CO1: Relate safety to Green Technology.
	III/II	CE611PE	BUILDING	CO2: Identify Renewable Energy systems.
50			TECHNOLOGIE	CO3: Understand the impact of continued use of non-renewable energy resources.
			S (PE – I)	CO4: Investigate renewable energy systems.
			S(IL I)	CO5: Understand energy consumption, efficiency & waste management.

				CO1: to learn the basics of Entrepreneurship and
				CO2: to learn entrepreneurial development which will help them to provide vision for their
				own Start-up.
				CO3: Students identify and secure customers, stakeholders, and team members through
			ENTREPRENEU	networks, primary customer research, and competitive and industry analyses in order to
51	III/II	CS600OE	RSHIP	prioritize and pursue an initial target market in real-world projects.
				CO4: Students are able to create presentations and business plans that articulate and apply
				financial, operational, organizational, market, and sales knowledge to identify paths to
				value creation
				CO5: Students increase their awareness and deliberately practice the skills and disciplines
				necessary to increase confidence and agency
		CE604PC		CO1: Understand about the equipment used to conduct the test procedures.
	III/II		ENVIRONMENT	CO2: Perform the experiments in the lab.
52			AL	CO3: Examine and Estimate water, waste water, air and soil Quality.
32			ENGINEERING	CO4: Compare the water, air quality standards with prescribed standards set by the local
			LABORATORY	governments.
				CO5: Develop a report on the quality aspects of the environment.
				CO1: Model the geometry of real-world structure Represent the physical model of
				structural element/structure.
		CE605PC	COMPUTER	CO2: Perform analysis.
53	III/II		AIDED DESIGN	CO3: Interpret from the Post processing results.
			LABORATORY	CO4: Design the structural elements and a system as per IS Codes
				CO5: The students will be able to analyze and design the simple structural members using
				computer software's.

54	III/II	EN508HS	ADVANCED ENGLISH COMMUNICATI ON SKILLS LABORATORY	CO1: To improve the students' fluency in English, with a focus on vocabulary. CO2: To enable them to listen to English spoken at normal conversational speed by educated English speakers. CO3: To respond appropriately in different socio-cultural and professional contexts. CO4: To communicate their ideas relevantly and coherently in writing. CO5: To prepare the students for placements.
55	III/II	*MC609	ENVIRONMENT AL SCIENCE	CO1: The Engineering graduate will understand technologies on the basis of ecological principles and environmental regulations which in turn help in sustainable development CO2: The Engineering graduate will evaluate technologies on the basis of ecological principles and environmental regulations which in turn help in sustainable development CO3: The Engineering graduate will develop technologies on the basis of ecological principles and environmental regulations which in turn help in sustainable development CO4: To educate the students regarding environmental issues and problems at local, national and international level. CO5: To know more sustainable way of living
56	IV/I	CE701PC	QUANTITY SURVEY & VALUATION	 CO1: Understand the technical specifications for various works to be performed for a project and how they impact the cost of a structure. CO2: Quantify the worth of a structure by evaluating quantities of constituents, derive their cost rates and build up the overall cost of the structure. CO3: Understand how competitive bidding works and how to submit a competitive bid proposal. CO4: Understand objectives functions and types of organizations in construction managements. CO5: Understand the types of contracts and process of bidding.

				CO1: Importance of Project Management.
	IV/I	CE702PC	PROJECT MANAGEMENT	CO2: Project Planning
57				CO3: Project Execution and implementation
				CO4: Significance of teams in projects.
				CO5: Project evaluation techniques.
				CO1: Acquire the knowledge of evolution of process of prestressing.
			PRESTRESSED CONCRETE	CO2: Acquire the knowledge of various prestressing techniques.
58	IV/I	CE721PE		CO3: Acquire the knowledge of loss of prestress in various prestressing techniques.
				CO4: Develop skills in analysis of prestressed structural elements.
				CO5: design of prestressed structural elements as per the IS codal provisions.
		CE732PE	Ground Improvement Techniques	CO1: Understand the various ground improvement methods.
				CO2: Assess different compaction methods for ground modification.
59	IV/I			CO3: Design dewatering systems to reduce the settlements.
				CO4: Comprehend stabilizations with chemical and grouting techniques.
				CO5: Understand the principles of soil reinforcement and confinement in engineering
				constructions.
				CO1: Identify different fundamental equations and concepts as applied in the Groundwater
				studies.
			Ground Water Hydrology	CO2: Discuss and derive differential equation governing groundwater flow in three
60	IV/I	CE743PE		dimensions.
				CO3: To solve groundwater mathematical equations and analyze pumping tests in steady
				and nonsteady flow cases.
				CO4: Distinguish the saline water intrusion problem in costal aquifers.

				CO5: Understand the saline water intrusion problem in costal aquifers.
				CO1: To select and design components based on their properties and requirements.
				CO2: Awareness about the electrical and electronic materials.
			ENGINEERING	CO3: Knowledge about bio materials like, titanium and stainless steel based.
61	IV/I	MM700OE	MATERIALS	CO4: Interpret the vitality of phase rule in metallurgy and application of phase rule to one
01	1 7 / 1	WIWIYOOL	(Open Elective –	and two component systems.
			II)	CO5: Understand the relationships between macroscopic material properties and
				microscopic structures.
				-
			~	CO1: Understand the features and capabilities of the software.
	IV/I	СЕ703РС	Civil Engineering	CO2: Apply fundamental principles in problem solving using software tools.
62			Software	CO3: Apply the software algorithm in the domain area.
			Laboratory	CO4: Develop solution for a range of problem of civil engineering using software tools
				CO5: prepare technical report
		CE853PE		CO1: Identify sampling and analysis techniques for air quality assessment.
	IV/II			CO2: Describe the plume behavior for atmospheric stability conditions.
63			Air pollution	CO3: Apply plume dispersion modelling
				CO4: assess the Concentrations Of Pollutants.
				CO5: Design air pollution controlling devices.
				CO1: An ability to design of runways and taxiways.
		CE861PE	Airports,	CO2: An ability to design the infrastructure for large and small airports.
64	IV/II		Railways and	CO3: An ability to design Super elevation and transition curve for railway horizontal
			Waterways	curves.
			_	CO4: An ability to design various crossing sturnout and signals in Railway Projects.

				CO5: An ability plan the harbours and ports projects including the infrastructure required
				for new ports and harbours.
				CO1: Identify renewable energy sources and their utilization.
				CO2: Understand the basic concepts of solar radiation and analyze the working of solar and
				thermal systems
65	IV/II	ME800OE	Non-Conventional	CO3 Understand principles of energy conversion from alternate sources including wind,
0.5	1 V / 11		Sources of energy	geothermal, ocean, biomass, biogas and hydrogen.
				CO4: Understand the concepts and applications of fuel cells, thermoelectric convertor and
				MHD generator.
				CO5: Identify methods of energy storage for specific applications